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It is shown that all parallel inviscid shear flows of constant density are unstable to a 
wide class of initial infinitesimal three-dimensional disturbances in the sense that, 
according to linear theory, the kinetic energy of the disturbance will grow at least as 
fast as linearly in time. This can occur even when the disturbance velocities are 
bounded, because the streamwise length of the disturbed region grows linearly with 
time. This finding may have implications for the observed tendency of turbulent shear 
flows to develop a longitudinal streaky structure. 

1. Introduction 
The question of under what conditions a parallel shear flow will become unstable has 

been one of the central problems in hydrodynamic research since the finding by Lord 
Rayleigh (1880) that a necessary condition for a parallel inviscid shear flow to have 
wavelike disturbances which grow exponentially with time is that the velocity profile 
possesses an inflexion point. Fjprrtoft (1950) later showed that the inflexion point must 
correspond to a maximum in the shear. An important general result was also obtained 
by Howard (1961), who proved that the complex phase velocity of the wavelike 
disturbance must lie within a semicircle having a diameter equal to  the difference 
between the largest and smallest velocity in the parallel flow. Arnol’d (1965) demon- 
strated that Rayleigh’s inflexion point criterion also holds for finite disturbances. Such 
general results afford a good overall understanding of the qualitative features of the 
stability of a disturbance in form of an infinite wave train. For a more detailed quanti- 
tative description one needs of course the actual eigenvalues, which may be found 
analytically for simple velocity profiles, such as those formed by straight-line segments, 
or by numerical methods. For a comprehensive discussion of such aspects we refer to 
the review article by Drazin & Howard (1966). 

Less well understood, however, is the evolution in time and space of an arbitrary 
three-dimensional disturbance introduced in the flow a t  some initial instant. A discus- 
sion of the initial-value problem was given as early as in Orr’s paper (1907), in which he 
pointed out the necessity of including a continuous as well as a discrete spectrum in the 
specification of the initial disturbance, a fact that was often overlooked in subsequent 
treatments of this problem. Eliassen, Hpriland & Riis (1953), however, took the 
continuous spectrum into account and gave a detailed analysis of the initial-value 
problem for an inviscid Couette flow. They were able to show that the disturbance 
velocity component in the direction normal to the flow vanishes at least as fast as t-2 
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for t .+ 00. Case (1960) also independently considered the same problem. Recently, 
Chimonas (1979) has shown that for a shear flow with stable density stratification, 
disturbances growing algebraically in time may arise. All of these investigations were 
restricted to two-dimensional disturbances. An analysis of three-dimensional initial 
disturbances in a boundary-layer type inviscid parallel shear flow has recently been 
carried out by Gustavsson (1978). The question of the asymptotic behaviour of the 
disturbances a t  large times was addressed by Wilke (1967), who showed that for a 
special class of initial disturbances that are independent of the streamwise direction, 
the perturbation kinetic energy may reach values up to twice the kinetic energy of the 
unperturbed flow. Such initial disturbances of infinitesimal amplitude were also con- 
sidered by Ellingsen & Palm (1 975),:who demonstrated that a streamwise perturbation 
velocity increasing linearly with time will result. They also pointed out that for finite 
disturbances, large gradients in u, i.e., large vorticity concentrations, would be 
created, thus possibly giving rise to strongly unstable flows. 

The purpose of this note is to show that a wide class of localized initial three- 
dimensional disturbances give rise to a perturbation kinetic energy growing linearly 
with time for any inviscid shear flow. The explanation for this behaviour is that the 
streamwise size of the disturbed region will increase linearly in time, whereas the 
streamwise disturbance velocity u does not decrease as t + 00. 

2. Analysis 

inviscid shear flow with velocity U = iU(y). They are governed by 
Consider infinitesimal disturbances with velocity components u, v, w on a parallel 

au av aw 
ax ay az 
-+-+- = 0. 

The pressure p may be eliminated by the use of 

(4) 

obtained by taking the divergence of the vector momentum equation (1)-(3). Then the 
following single equation for v may be derived : 

(;+ U&)V%- 77”- aV = 0. 
ax 

This is to be solved subject to the initial conditions 

( 7) u, v, w = uo, vo, w, at t = 0 



Algebraic shear instability 245 

and the boundary conditions that v is zero a t  the boundaries of the flow, a t  y = 0 and 
y = d, say. We shall assume that the initial disturbance is localized so that it vanishes 
outside some finite radius from the origin. 

By the integration of (1) over x we find 

where 

and 

au - = -VU'(y), 
at 

v =  f "  udx 
J - m  

v =Iw vdx. 
- m  

Here it has been assumed that the disturbance is sufficiently localized such that the 
integrals (9),  (10) exist. By integration of (2) one finds 

where 
W 

j i = /  pax. 
--m 

From the solution of ( 5 )  it follows that p may be written as a derivative with respect 
to  x of a finite integral, which vanishes for large x. Hence ji = 0, and from ( I  1 ) it thus 
follows that V is independent of time. Integration of (8) then gives that 

(12) 
- u = u,-tv, U',  

i.e., for Go and dUldy different from zero the integrated streamwise momentum 
increases linearly with time. This does not imply that u itself necessarily increases, 
since the disturbance could-and in fact does-spread streamwise as time goes on. 
Thus, although the analysis for the integrated quantities is mathematically the same 
in the linear limit as the analysis for x-independent disturbances (Stuart 1965; Wilke 
1967; Ellingsen & Palm 1975), the time over which linear theory remains valid should 
be much longer in the present case than in theirs (see discussion below). Aswill beshown 
subsequently, the streamwise spreading of the disturbance allows its total kinetic 
energy to  grow with time, a t  least as fast as t .  

I n  Schwartz's inequality 

where f and g are any measurable and integrable functions (see Titschmarsh 1939, 
p. 381), we set f = u and 

1 for (U,in-A)t<z< (U,,,+A)t, 

0 otherwise, 
9 = (  

where Urn,, and U,,, are the minimum and maximum velocities, respectively, in the 
parallel shear flow, and where A > 0. An analysis of the initial-value problem (see 
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appendix) shows that the propagation speed of disturbances lies between Urnin and 
Urnax. As time increases, a disturbance of finite initial streamwise extent will therefore 
become more and more confined within the streamwise region of non-zero g. This also 
includes the streamwise tails of the disturbance, which will decay over a distance of the 
order of its initial streamwise length. As t + a3 the left-hand side of (13) will hence tend 
towards U, and the inequality may then be written, in this limit, as 

where 

and 

J --m 

L = ( [ U ] + 2 A ) t  

[ U ]  = Urnax - Urnin. 

Thus for the total integrated kinetic energy of the disturbance one finds in the limit 
o f t - t m ,  

00 

[ (u2+w2+w2)dx > +tU’2G:/([U]+2A) (17) 
A J  --m 

for any A > 0 ,  i.e., the total kinetic energy of a disturbance with 8, $. 0 in an inviscid 
parallel shear flow will grow a t  least as fast as linearly in time as t + 00. 

3. Discussion 
The result ( 1  7) holds irrespectively of whether the shear flow is stable or not to 

exponential growth of wavelike disturbances. Thus, any inviscid parallel shear flow will 
exhibit growth of the kinetic energy of a three-dimensional disturbance with Go $. 0. 
For a flow without an inflexion point this growth of kinetic energy is associated with the 
behaviour of the u component. An examination of this component for large times (see 
appendix) reveals that  the u component remains bounded for large times, for any 
initial disturbance which is of finite extent in x, but the streamwise dimension of the 
disturbed region grows linearly in time. Three-dimensional disturbance with Go $. 0 
will therefore evolve into long streaks of streamwise momentum excess or defect. It 
follows from (12) that  this tendency could be especially strong where U‘ is large. That 
the simple linearized inviscid theory indicates this behaviour may be of significance in 
connexion with the longitudinal streaks, commonly observed in the wall region of 
turbulent and transitional boundary layers. 

It should be re-emphasized that, in contrast to  the case of a disturbance which is 
independent of x, such as was considered by Stuart (1965) and by Ellingsen & Palm 
(1975), an initial disturbance of finite streamwise extent need not lead to an eventual 
complete redistribution of the streamwise momentum because the total cross-stream 
displacement of individual fluid elements remains finite for a weak disturbance in this 
case, according to linear theory. One may estimate this displacement from the result 
(12) taking the u perturbation to be associated primarily with a y displacement, Ay, of 
the fluid element, and the length of the disturbed region to be of order [ U ]  t .  Thereby 
one finds (provided U’ $. 0 )  

AY = 0(5o/[UI). 
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For linearization to be valid one must require this to be small compared to the width d 
of the shear flow, or 

Go 6 d [ U ] .  

The right-hand side of this inequality is a measure of the streamwise momentum of the 
shear flow available for redistribution; hence the linearized theory does not hold if the 
net vertical momentum of the initial disturbance is comparable in magnitude with the 
streamwise momentum. Therefore, linear theory is very much restricted for the 
analysis of x-independent disturbances, for which the vertical momentum is infinite. 
Other nonlinear effects, such as nonlinear distortion and secondary instability due 
to formation of thin shear layers, may also limit the validity of the linearized theory. 
A simple kinematical argument shows that such nonlinear effects could become large 
a t  times for which an individual fluid element has been convected by the horizontal 
perturbation velocity flow field a distance comparable with the horizontal dimensions 
of the region of initial disturbance. Thus, linearized theory would only be valid for 

4 2  6 1, 

where qh is the initial horizontal velocity perturbation and I a typical horizontal 
dimension of the initially perturbed region. Hence the linear growth of perturbation 
energy analysed here may hold only during a finite time interval inversely proportional 
to the magnitude of the initial perturbation. Such general restrictions in the validity 
of linearized theory for the analysis of initial disturbances in a shear flowmust of course 
always be kept in mind when interpreting the results. Also, viscous effects will become 
increasingly important for large times. An analysis based on a purely convected distur- 
bance (with v = 0) shows that the inviscid analysis is limited to times short compared 
to  ( l2 / vV2)*  (Landahl 1977). 

I am indebted to L. N. Howard for many helpful discussions on this problem and also 
to  M. McIntyre for help in clarifying many of the important points in the manuscript. 
The work reported in this note was sponsored in part by the Air Force Office of Scientific 
Research under Grant AFOSR 79-0006. 

Appendix. Behaviour of a localized inviscid disturbance for large times 
Let a caret denote a triple Fourier transform with respect to x, z and t ,  i.e., 

(Convergence of the time integral for the causal initial-value problem may require that 
w must have a positive imaginary part.) Application of Fourier transform to (6),  (1) 
and (5) gives, respectively, 

( u - c )  (8” - k28) - U’‘9 = fo/ ia ,  (A 2) 

= - ii, U’ i- ia$/p 6, 
ia( u - c )  + ia( u-c)’ 

I 

$ / p  = -F[(u-c)8’-r i ’a]+--?- ,  ia U 

k2 
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c = w / a ,  

k2 = a 2 + / 3 2 ,  

fo = (E; - k 2 E o ) ,  

and tildes denote x, z transforms of the initial conditions, i.e. 

Combination of (A 3) and (A 4) gives 

&,=- P28U' + & $ I +  Go 5; 
i ak2(U-c )  k2 i a ( U - c ) - k 2 ( U - c ) *  

We shall investigate the behaviour of u for large times. It will be assumed that the 
initial velocity field is localized in space and is smooth with continuous first derivatives. 
The last two terms in (A 9) involving the initial velocity field are easily inverted yielding 
a contribution which may be written as a function of y, z and the convected co-ordinate 
x - Ut.  This function, if finite at t = 0 for all x, will remain finite for all t. The first term 
is of the form f = g/[ia( U - c ) ] ,  the inverse of which is given by 

where f and g are the inverse transforms off and 8, respectively. Application of this to 
(A 9) shows that boundedness of v for t --f co, which has been the main concern in 
traditional hydrodynamic stability theory, does not necessarily guarantee bounded- 
new of u; this depends on the behaviour of v for large values of both 1x1 and t .  Further- 
more, u may remain non-zero in the limit t - tco even when v -+ 0, so that it becomes 
necessary to consider also velocity profiles which are stable in the usual hydrodynamic 
sense, i.e., profiles without inflexion. For unstable flows with inflexion, v will grow 
exponentially with time, and the estimate (17) will then be highly conservative and 
rather uninteresting in this context. Therefore, the case without inflexional instability 
will be given special attention here. 

In  studying the behaviour of v for large 1x1 and t we may make use of techniques 
familiar in earlier works on hydrodynamic stability. 

A formal solution for 8 may be constructed from two linearly independent homo- 
geneous solutions, 0 = Ql, 2, of (A 2) in the usual fashion by the method of variation 
of parameters (or equivalently, from one-dimensional Green's functions) 

8 = y m ( Y )  QAYJ- @2(Y) @l(Yl)I[ia(Ul-c) ~ l - 1 f o o ( Y ~ ~ ~ Y l + . l @ l ~ Y ~ + ~ 2 @ 2 ~ Y ~ ~  
0 

(A 11) 

where W is the Wronskian, W = 0; Q2 - @; @, and Ul = U(yl). Theintegration constant 
8, and e2 are to be chosen such that the boundary conditions 

a =  0 at y =  Q , d ,  (A 12) 
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are satisfied. Two linearly independent solutions 0, and CD2 may be constructed by use 
of Heisenberg's (1924) technique in form of the series (see Lin 1955, p. 34) 

m 

n=O 
Q1.2 = ( U - c )  2 q p ( y ) k 2 n ,  

where 

q p  = 1, (A 15) 

q p  = (U, - c)-2 dyl, (A 16) 1: 
and where Ul E U(yl), U2 = U(y2), U(y,) = c .  The solution CD, is regular in c. The main 
singularities are contained in the first term (A 16) in the series for CD2. By expansion 
around the double pole a t  y = yc one finds, assuming U ( 0 )  = 0, 

+ O(c1nc) + 0[ (  U - c )  In ( U  - c ) ] .  (A 17) 
U 

(2) q 2  z - 

Substitution into (A 14) shows that all other singularities are of higher order. In  order 
for the solution to represent properly an initial-value problem one has to assume that 
ac has a small positive imaginary part. The proper branch of the logarithmic term in 
(A 17)  is then to be selected by letting the integration path in the complex y plane pass 
below the singular point for U'(y,) > 0 and above it for U'(y,) < 0. 

The M'ronskian is a constant for the Rayleigh equation. It is most easily evaluated 
a t  y = yc7 and one finds 

W = - F  lC, (A 18) 

where index c refers to the value a t  y = yc, 

Flc = 1 + k 2 / "  (U, - c ) - ~  dy, /"(U,- ~ ) ~ d y ~ +  .. .. 
0 Yc 

Substitution into (A 11) and application of the boundary condition at y = d yields 
a solution which may be written in the form 

(A 19) 

where 

b is seen to have a pole at c = V, and branch points at c = Ul and c = U(y). Additional 
poles may arise from the zeroes of CD2(d), which correspond to the eigenvalues in the 
usual stability problem for an infinite wave train. The asymptotic behaviour for large 
time and x is determined by these poles in the c and ct planes, the branch points only 
contributing with terms varying as t-"(n 2 1)  for t --f co. Inversion of the contribution 
from the pole at c = U, yields, in consistency with (A lo), 

9-1{[ia(U1 - c)]-l} = a(x - U1t) H ( t ) ,  (A211 
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where 6 is the Dirac delta function and H ( t )  the unit step function. Substitution into 
(A 19) then gives, upon integration over y l ,  a contribution to v vanishing as t (provided 
U ;  $ 0 )  in a convected frame of reference travelling with a velocity within the range 
of U(y) .  For fixed x, v will vanish faster, as t-2. Also, for fixed t ,  v will vanish for 
1x1 --f co. Inversion of (A 9) with the aid of (A 10) then shows that this gives a contribu- 
tion to u which remains finite as t -+ co. 

Let the poles corresponding to Q2(d) = 0 be located at 

c = c(=) (k) = c p + i c y .  (A 22) 

From (A 16), (A 17) is follows that CW must lie within the range of U ( y )  for small 
Ic$))I, otherwise OM becomes of one sign. Inversion with respect to time of this pole 
contribution will give a term of the form 

e-iac(n't. (A 23) 

Of interest here is the case of stable waves, i.e., flows without any inflexion points, so 
that ac$? < 0. Such eigenvalues can arise for the initial-value problem when the proper 
branch of the integral (A 16) is taken? (see statement below (A 17)) .  At the inversion 
with respect to x ,  the contribution from around a = 0 yields 

where c$) and cg) are to be evaluated at  01 = O(k = 1/31 ). For small c$) /cg)  and moderate 
times this behaves like a delta function of the argument x - c$)t, and for large t it gives 
a contribution vanishing as t-' in either a fixed or a convected frame of reference. 

That v is found to tend to zero for large t as t-l is consistent with V being independent 
of time and the perturbed region growing linearly in time. The asymptotic behaviour 
of V for large 1x1 and t thus found assures that u remains bounded as t -+ 03 for a flow 
without inflexion. For a three-dimensional disturbance with go + 0, u will remain non- 
zero in the limit of t + 00, but in the two-dimensional case, for which 5 = 0 by con- 
tinuity, one finds that v will vanish as t-2 rather than as t - l ,  and u will decay in the same 
manner. Application of continuity also shows that, in as muchas the ufieldwillelongate 
in the streamwise direction in proportion to t so that au/ax N t- l ,  w will hence also tend 
towards zero as t- l ,  except possibly in the streamwise tails of the disturbance region, 
whose dimensions are set by the streamwise scale of the initial distribution. 

As a simple example, consider the case of constant shear, U = U'y, for which one 
may take Q1 = exp ( -ky), Qz = exp ( k y ) .  For this case there is no normal mode, and 
after inversion the exact solution for v is found to be given by 

t The proof of the Rayleigh criterion, which shows that there are no eigenvalues with CJ < 0 
for an eigenfunction with continuous first derivative, does not exclude the possibility of poles 
c = c ( n ) ,  @,(d) = 0 in the lower complex plane for the initial-value problem. For this problem 
the inversion integral is to be carried out along a contour slightly above the real c axis (for a > 0). 
Along this path v* has a branch point for c = U ( y ) ,  and in order to specify 8 uniquely for all c, 
a branch cut must be introduced in the complex c plane, most conveniently from c = U(y) to 
c = U(y) - im. Therefore, for c4 < 0 and cW within the range of U ,  u  ̂ and u '̂(y) may be discon- 
tinuous for some y = yc with U(y,) = c,. 
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where 

Expansion for large t yields 

5 = x- U'ylt. 

25 1 

where 

J --m 

and 
yc = x/U't. 

The cross-flow for large times thus becomes a two-dimensional one in each cross-flow 
plane x = const. decaying as t-l. For go = 0, as would be the case for a two-dimensional 
(in x, y plane) flow, v will decay as t-2 or faster. 

By use of (A 9) the solution for u may be constructed and expanded for large t in a 
similar manner. One finds, after some calculations, 

where the upper sign should be used for y c x/U't and the lower one for y > x:/U't. 
This approximation does not hold for y N x/U't, for which a thin shear layer develops 
with a structure depending on the detailed fo distribution. It follows from (A 29) that 
the front of the disturbance propagates with a velocity equal to the maximum one, 
Urnax, for the region of non-zero fo. Similarly, the back of the disturbance will propagate 
with the minimum velocity, Urnin, in the y range of non-zero fo so that the disturbed 
region will grow in the streamwise direction at a rate given by Urn,, - Urnin. 
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